

Algal Biotechnology

Background

It has been known that Spirulina has significantly potential as sources of protein and high-value chemicals such as essential fatty acids, e.g. linoleic acid and g-linolenic acid (GLA), including the photosynthetic pigments e.g. chlorophyll a and phycocyanin. Currently, Spirulina has more widely markets for health food, animal food, cosmetics and pharmaceutical product.

The Algal Biotechnology research group at KMUTT has started an interest in Spirulina around 1987 since the discovery of Spirulina growing profusely in a stabilization pond of tapioca starch wastewater and Thailand climate is suited in large scale for Spirulina cultivation. With financial support from the National Center for Genetic Engineering and Biotechnology (BIOTEC), the research begun from the use of tapioca starch wastewater as (a) substrate for cultivation in order to reduce production costs. Since then the research group has focused on developments of mass cultivation techniques to obtain high productivity, extraction processes of lipid/phycocyanin in pilot scale, and also understanding the physiological factors influenced biomass and high value chemicals, and molecular biology.

Spirulina consortium was set up in 2002 by BIOTEC, Nation Science and Technology Development Agency (NSTDA) and Algal Biotechnology Laboratory, King Mongkut's University of Technology Thonburi. The purpose of Spirulina consortium is to bring together the private sectors who involve in cultivation, trading and the research in order to help strengthen the private sectors.

Goals and Objectives

- To develop technologies needed for microalgal cultivation and also develop suitable strains for commercial purpose.

- To understand the biosynthesis of high value chemicals from Spirulina.

- To use Spirulina as a plant model for the study of stress response, photosynthesis and respiration.

- To promote university-industry linkage in algal biotechnology.

Current R&D

1. Mass cultivation of Spirulina and microalgae

- Obtain the maximum benefit from the product by manipulation of culture conditions
- Study the physiological factors stimulating biomass and high value chemical production and develop the mathematic model to predict the interest products.
- Obtain the suitable strains for outdoor cultivation according to the photosynthetic characteristics
- Develop the mathematic model to predict biomass

2. High value chemicals

- Study on stress response
- Extraction of lipid and phycocyanin in pilot scale techniques

3. Molecular biology

- Mechanism of the desaturase enzyme and phycocyanin
- Proteomic
- Genomic
- Transformation

Technology Transfer

-
- Outdoor mass cultivation of Spirulina at commercial scale

High value chemical production/extraction from Spirulina

Products and Services

Consulting

With a strong background and research experience in algal technology, our group is in a unique position to offer consulting and knowledge transfer to private organizations. The scope of consulting ranges from mass cultivation techniques and lipid/phycocyanin extraction processes to the design of reactors.

Training Courses

Training courses in the field of algal technology are regularly offered to both the academic and private sectors. Top researchers in the field from overseas are often invited as guest speakers in these courses. The topics most commonly covered are physiology and biotechnology especially for mass cultivation of microalgae and uses of Spirulina biomass and its high valued chemicals.

Publications

National Journal

Kunsuk, J., Ruengjitchawalaya, M., Chaiklahan, R., Hongsthong, A., Bunnag, B. and Tanticharoen, M. 2004. "Effect of berberine on fatty acid composition in plasma and thylakoid membrane in Spirulina sp." *Journal of Scientific Research*

Chulalongkorn University (Section T), 1, 279-286.

Chaiklahan, R., Khonsarn, N., Chirasuwan, N., Ruengjitchatchawalya, M. Bunnag, B. and Tanticharoen, M. 2007 “Response of *Spirulina platensis* C1 to High Temperature and High Light Intensity”; *Kasetsart J. (Nat. Sci.)* 41 (1):123-129.

Prommeenate, P., Kurdrit, P. Sirijuntarut, M. and Hongsthong, A. 2007 “Expression of Fatty Acid Desaturase Enzymes from *Cyanobacterium Spirulina platensis* in Yeast *Saccharomyces cerevisiae*” *Kasetsart J. (Nat. Sci.)* 41 (1):130-135.

Chirasuwan, N., Chaiklahan, R., Ruengjitchatchawalya, M., B. Bunnag and Tanticharoen, M. 2005 “Anti HSV-1 Activity of *Spirulina platensis* Polysaccharide” *Kasetsart J. (Nat. Sci.)* 41(2): 311-318.

International Journal

Subudhi, S., Kurdrid, P., Hongsthong, A., Sirijuntarut, M., Cheevadhanarak, S. and Tanticharoen, M. 2008 “Isolation and functional characterization of *Spirulina* D6D gene promoter: Role of a putative GntR transcription factor in transcriptional regulation of D6D gene expression” *Biochemical and Biophysical Research Communications* 365: 643-649.

Wattana Jeamton, W., Mungpakdee, S., Sirijuntarut, M., Prommeenate, P., Cheevadhanarak, S., Tanticharoen, M. and Hongsthong, A. 2008 “A combined stress response analysis of *Spirulina platensis* in terms of global differentially expressed proteins, and mRNA levels and stability of fatty acid biosynthesis genes” *FEMS Microbiology Letters* 281(2), 121–131.

Hongsthong, A., Sirijuntarut, M., Prommeenate, P., Thammathorn, S., Bunnag, B., Cheevadhanarak, S. and Tanticharoen, M. 2007 “Revealing differentially expressed proteins in two morphological forms of *Spirulina platensis* by proteomic analysis” *Molecular Biotechnology* 36:123-130.

Kurdrid, P., Subudhi, S., Cheevadhanarak, S., Tanticharoen, M. and Hongsthong, A. 2007 “Effect of two intermediate electron donors, NADPH and FADH₂, on *Spirulina* Δ6-desaturase co-expressed with two different immediate electron donors, cytochrome b5 and ferredoxin, in *Escherichia coli*” *Mol. Biol. Rep.* 34: 261-266.

Hongsthong A., Subudhi, S., Sirijuntarut, M., Kurdrid, P. and Cheevadhanarak, S. 2006. Revealing the complementation of ferredoxin by cytochrome b5 in Spirulina-D6-desaturation reaction by N-terminal fusion and coexpression of fungal-cytochrome b5 domain and Spirulina-D6-acyl-lipid desaturase. *Appl. Microbiol. Biotechnol.* 72:1192-1201.

Kurdrit, P., Subudhi, S., Hongsthong, A., Ruengjitchatchawalya, M. and Tanticharoen, M. 2005 "Functional expression of Spirulina -D6-desaturase gene in Yeast *Saccharomyces cerevisiae*"; *Mol. Biol. Reports*, 32(4):215-226.

Ruengjitchatchawalya, M., Kovács, L., Mapaisansup, T., Sallai, A., Gombos, Z., Ponglikitmongkol, M. and Tanticharoen, M. 2005 "Higher plant-like fluorescence induction and thermoluminescence characteristics in cyanobacterium, Spirulina mutant defective in PQH2 oxidation by cytb6/f complex"; *Journal of Plant Physiology*, 162: 1123-1132.

Hongsthong, A., Subudhi, S., Sirijuntarat, M. and Cheevadhanarak, S. 2004 "Mutation study of conserved amino acid residues of Spirulina D6-acyl-lipid desaturase showing involvement of histidine 313 in the regioselectivity of the enzyme. *App. Microbiol. Biotechnol.* 66: 74-84.

Hongsthong, A., Paithoonrangsarid, K., Phapugrangkul, P., Deshni, P., Sirijuntarat, M., Subudhi, S., Cheevadhanarak, S. and Tanticharoen, M. 2004 "The expression of three desaturase genes of *Spirulina platensis* in *Escherichia coli* DH5α"; Heterologous expression of Spirulina-desaturase genes, *Mol. Biol. Reports*. 31: 177-189.

Hongsthong, A., Deshni, P., Paitoonrangsarid, K., Cheevadhanarak, S. and Tanticharoen, M. 2003. "Differential Responses of Three Acyl-Lipid Desaturases to Immediate Temperature Reduction Occurring in Two Lipid Membranes of *Spirulina platensis* Strain C1"; *J. Biosci. Bioeng.* 96(6), 519-524.

Hongsthong, A., Deshni, P., Paitoonrangsarid, K., Phapugrangkul, P., Tanticharoen, M. and Cheevadhanarak, S. "Effect of temperature on the desaturase genes translation in *Spirulina platensis* C1"; *Journal of Applied Phycology*. . (Proceeding)

Ruengjitchatchawalya, M., Chirasuwan, N., Chaiklahan, R., Bunnag, B., Deshni, P. and Tanticharoen, M. 2002. "Photosynthetic characteristics of a mutant of *Spirulina plantensis*"; *Journal of Applied Phycology*. 14: 71-76.

Meesapyodsuk, D., Reed, D.W., Cheevadhanarak, S., Deshnium, P. and Covello, P.S. 2001. "Probing the mechanism of a cyanobacterial D9 fatty acid desaturase from Spirulina platensis C1 (Arthrosphaera sp. PCC9438)." Comparative Biochemistry and Physiology Part B. 129: 831-835.

Deshnium, P., Paitoonrangsarid, K., Suphatrakul, A., Meesapyodsuk, D., Tanticharoen, M. and Cheevadhanarak, S. 2000 "Temperature-independent and dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis C1 (Arthrosphaera sp PCC9438)." FEMS Micro. Lett. 184:207-213.

Nomsawai, P., Tandeau de Marsac, N., Claude Thomas, J., Tanticharoen, M. and Cheevadhanarak, S. 1999 "Light regulation of phycobilisome structure and gene expression in Spirulina platensis C1 (Arthrosphaera sp. PCC9438)." Plant Cell Physiol. 40(12): 1194-1202.

Vonshak, A., Kancharaksa, N., Bunnag, B. and Tanticharoen, M. 1996 "Role of light and photosynthesis on the acclimation process of the cyanobacterium Spirulina platensis to salinity stress." Journal of Applied Phycology.. 8:119-124.

Vonshak, A., Chanawongse, L., Bunnag, B. and Tanticharoen, M. 1996 "Light acclimation and photoinhibition in three Spirulina platensis (cyanobacteria) isolates." Journal of Applied Phycology. 8:35-40.

Vonshak, A., Chanawongse, L., Bunnag, B. and Tanticharoen, M. 1995 "Physiological characterization of Spirulina platensis isolates: Response to light and salinity." Plant Physiology. 14:161-166.

Tanticharoen, M., Reungjichachawali, M., Boonag, B., Vonktaveesuk, P., Vonshak, A. and Cohen, Z. 1994 "Optimization of g-linolenic acid (GLA) production in Spirulina platensis." Journal of Applied Phycology. 6:295-300.

Chanawongse, L., Lee, Y.K., Bunnag, B. and Tanticharoen, M. 1994 "Productivity of the cyanobacterium Spirulina platensis in cultures using sunlight." Bioresource Technology. 48:143-148.

Cohen, Z, Reungjichachawali, M., Siangdung, W. and Tanticharoen, M. 1993. Production and partial purification of g-linolenic acid and some pigments from *Spirulina platensis*. *Journal of Applied Phycology*. 5:109-115.

Cohen, Z, Reungjichachawali, M., Siangdung, W., Tanticharoen, M. and Heimer, Y.M. 1993 "Herbicide-resistant lines of microalgae: growth and fatty acid composition"; *Phytochemistry* 34(4): 973-978.

Tanticharoen, M., Bunnag, B. and Vonshak, A. 1993 "Cultivation of *Spirulina* using Secondary treated starch wastewater"; *Australasian Biotechnology*. 3:223-226.

Advisors

Prof. Dr. Morakot Tanticharoen

Assoc. Prof. Dr. Sakarindr Bhumiratana

Staff

Assoc. Prof. Boosya Bunnag

Asst. Prof. Dr. Supapon Cheevadhanarak

Asst. Prof. Dr. Marasri Ruengjitchatchawalya

Dr. Wipawan Siangdung

Dr. Apiradee Hongsthong

Dr. Kalyanee Paithoonrangsarid

Dr. Peerada Prommeenate

Mrs. Wattana Jeamton

Ms. Ratana Chaiklahan

Mrs. Matura Sirijuntarut

Ms. Nattayaporn Chirasuwan

Ms. Sudarat Dulsawat

Ms. Tippawan Mapaisansup

Mrs. Pavinee Kurkrit

Ms. Rayakorn Yutthanasirikul

Address

Algal Biotechnology Laboratory

Pilot Plant Development and Training Institute

King Mongkut's University of Technology Thonburi

83 Moo. 8 Thakham, Bangkhuntien

Bangkok 10150, Thailand